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Abstract. In order to compare microscopic and macroscopic approaches to the phenomenon of electrostatic
influence, we have studied the atomic charges of an electric conductor, obtained either from macroscopic
classical electrostatics, or microscopic quantum ab initio calculations. A torus was chosen as conducting
material, built from valence monoelectronic atoms and influenced by an external point charge. The classical
electric charges are obtained by integrating the macroscopic density over “atomic” sectors. This density
is determined from a numerical integration of linearized electrostatic equations. The quantum charges
are defined from Natural Orbitals in MP2/6-31G* calculations on clusters of different sizes. The overall
agreement is good, with reasonable discrepancies due (i) to the continuity of the macroscopic model,
which ignores the oscillations on atomic distances; and (ii) to the linearity constraint in the macroscopic
equations.

PACS. 31.15.Ar Ab initio calculations – 41.20.Cv Electrostatics; Poisson and Laplace equations, boundary-
value problems – 71. Electronic structure of bulk materials

1 Introduction

In the presence of fixed external electric charges, a
conducting body is subjected to electrostatic influence:
a surface charge density appears on the surface of the
conductor, so that the total electric field remains equal
to zero inside the conductor. This phenomenon is usu-
ally discussed in terms of macroscopic bodies, and de-
scribed by macroscopic electrostatic equations [1–3]. In
this paper, we address the question of the relevance of
quantum microscopic calculations for describing electro-
static influence. For this purpose, we will use ab initio
quantum calculations on sufficiently large numbers (6 to
90) of small atoms, i.e. hydrogen or sodium, clusters. The
atomic charges obtained with quantum mechanics will be
compared [4] to the macroscopic charge density deduced
from the classical macroscopic electrostatic equations (lin-
ear terms).

(1) Shape of the conductor. The conductor geometry
must be chosen with a small volume in relation to its sur-
face area, so that the number of atoms necessary to fill
the conductor will be small enough for precise quantum
calculations. Linear volumes (a rod, a torus) satisfy this
condition. We have chosen a torus rather than a rod, the
extremities of which would generate strong electrostatic
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field variations. Microscopically, a torus can be realized
with a single ring of atoms, with its 3D-delocalized elec-
tronic cloud. Apart from its overall size, the shape of
a torus depends on a unique parameter, i.e. the ratio
ρ = r/R of the section radius r to the mean radius R
(ρ < 1). In the following, r and R should vary according
to the kind of atom chosen, and to their number N . In the
macroscopic calculations, the section radius r is chosen
equal to half the interatomic distance d between neigh-
bouring atoms, except otherwise stated (cf. Sect. 4.2).

(2) Conductor material. Because a large number of
quantum ab initio calculations are to be performed, atoms
with a small number Z of electrons must be chosen. We
will treat several rings (N = 6, 18, 30, 50, 90) of hy-
drogen atoms (Z = 1), and one ring (N = 18) of sodium
atoms (Z = 11). The quantum orbitals which will be found
justify their being considered as conducting materials.
Therefore, in the macroscopic calculations, the continu-
ity equation

ε0En(ext) = εEn(int) (1)

(En is the normal electric field, taken on the two sides of
the torus surface and ε0 is the vacuum dielectric constant)
must be written with an infinite dielectric constant ε, i.e.
En(int) = 0.

(3) External charge. The torus is influenced by a
unique external electric point charge Q, placed in the
plane of the torus. This position can be described either
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by the absolute distance D from Q to the torus center, or
by the relative distance R/D.

The value of the charge Q is unimportant for classical
macroscopic calculations, the linear results of which are
proportionnal to Q. Therefore, classical calculations will
be performed for only one value, Q = −1 (e−: electron
charge atomic unit). The value of Q will be varied in the
quantum calculations, the results of which are not linear
in Q.

2 Classical macroscopic calculation

The calculation consists of two parts. We have first to
find the surface charge density σ on the torus, using the
fact that inside the torus it creates a field −EQ opposite to
that created by Q, and then to integrate the charge density
σ over each of N equal toroidal sectors representing the
atoms.

(1) Approximation of σ. In principle an analytical cal-
culation of σ is possible, using toroidal functions [5,6]. But
handling these functions is heavy, and their numerical sur-
face integration over the toroidal sectors would be rather
time-consuming. Therefore, we choose to approximate σ
by a limited Fourier expansion,

σapprox(θ, ϕ) =
∑

m,n

amncos(mθ)cos(nϕ), (2)

where 0 ≤ θ < 2π and 0 ≤ ϕ < 2π are toroidal coordi-
nates (θ on the section circle of radius r, ϕ on the circle of
radius R). For symmetry reasons the coefficients of the si-
nus terms are zero. For computing the field created at any
point S inside the torus, the surface charge distribution
(2) is replaced by a regular distribution of point charges q
on the torus surface. A grid of 128 × 256 point charges
qij is chosen at the summits of a toroidal net with the
following toroidal coordinates:

qij : (r; θi = i2π/128; ϕj = j2π/256).

(2) Electrostatic condition. The coefficients amn in expan-
sion (2) are optimized in order to minimize the modulus
of the total electric field

E = EQ + Eσ (3)

inside the conductor. More precisely, we minimize the
squared modulus of E, summed over a number of fixed
points S chosen inside the conductor, i.e.

∆ =
∑

S

E2(S). (4)

In definition (4) the summation is extended over a second
toroidal net

Sij : (r × 0.8; θi = (i + 1/2)π/32; ϕj = (j + 1/2)π/64),

inside the torus. The 1/2 coefficient introduces an in-
finitesimal shift which ensures that the positions of the
two nets are symmetrical with respect to each other.

(3) Linear optimization. ∆ is a second order poly-
nomial of the coefficients amn. Therefore, a linear
optimization is possible. To avoid double indexing in sum-
mation (4), let us denote a pair of indices (m, n) occuring
in (2) by a single index M and similarly M ′ for a pair
(m′, n′). The equations

∂∆/∂aM = 0

lead to the system of linear equations

aMCMM +
∑

M ′ �=M

aM ′CMM ′ + KM = 0, (5)

with

CMM ′ =
∑

S

VM (S) ·VM ′(S) (6)

KM =
∑

S

VM (S) ·B(S) (7)

and

VM (S) =
∑

q

[R + r cosθq]cos(mθq)cos(nϕq)(S − q)|S − q|−3 (8)

B(S) = Q(r∆θ∆ϕ)−1(S− Q)|S − Q|−3. (9)

The coefficients (6) and (7), which necessitate two
(twofold) summations

∑
S and

∑
q over the internal and

surface toroidal nets, are computed once and for all. The
computer program ElstTore was written for this purpose.
With a Fourier expansion (2) limited to order six, i.e. to
twenty seven coefficients amn, the precision is satisfactory:
at the end of the optimization, the residual value of ∆ is
one or two per cent of the sum

∆initial =
∑

S

E2
Q(S) (10)

which is the starting value of ∆ when all the amn’s are
initialized to zero.

Note that the first and second coefficients a00 and a10

are connected together. Indeed the total charge of the
torus is

qtorus = 2π2r(2R a00 + r a10), (11)

which gives for an uncharged torus

a00 = −r/(2R)a10. (12)

(4) Integration of σ over equal toroidal sectors, represent-
ing the atoms. The n-th toroidal sector can be defined by

ϕmin(n) < ϕ < ϕmax(n), any 0 ≤ θ < 2π. (13)

with

ϕmin(n) = (n − 3/2)2π/n; ϕmax(n) = (n − 1/2)2π/n.
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When integrating relation (2) over this region, we find
that the global charge of the sector is

qn = πr[(2Ra00 + ra10)(ϕmax − ϕmin)

+
∑

p>0

(2Ra0p + ra1p)[sin(pϕmax) − sin(pϕmin)]/p, (14)

the first term of which is zero thanks to relation (12).

3 Quantum microscopic approach

In quantum chemical calculations the best suited level of
theory to obtain reliable electronic charge [7] is the Moller-
Plesset perturbation method at order 2 combined with ba-
sis sets of double-ζ plus polarization quality as the 6-31G*
basis set [8]. For computing reasons, we would rather deal
with the lightest atoms possible, provided that the physi-
cal conditions of the solid phases are fulfilled. Therefore we
have chosen sodium, whose solid phase has a metallic char-
acter at ambient temperature, and hydrogen, although its
metallic character appears only in a solid phase under ex-
treme conditions of pressure and temperature. It is im-
portant that we obtain molecular orbitals (MO) having a
metallic character. This is achieved first by the choice of a
torus, which fulfils the infinite boundary conditions, and
moreover by the consideration of equal distances between
bonded atoms. Indeed, if we optimize the geometry while
starting from a distorted Peierls-like structure, where H2

molecule interatomic distances are preserved, we can show
that, without obtaining any energy minimum point on the
potential energy surface, we tend to infinitely separated
H2 molecules.

To measure the consequences of the use of a limited
number of atoms, we need to test the convergence of the
results according to the number of atoms N . We select
values of N (N = 6, 18, 30, 50 and 90) giving elec-
tronic closed-shells. With valence monoelectronic atoms
this leads to the condition that (N − 2) must be a mul-
tiple of 4, since all MO’s are doubly degenerate except
the first one. For the isolated torus without an external
charge (Q = 0), and for each value of N , the optimization
of the structure at the MP2/6-31G* level yields an al-
most linear variation of the radius of the torus in function
of the number of atoms (Tab. 1), since the distance (d)
between bonded hydrogens, and the MP2 atomization en-
ergy per atom (Eat/N), are nearly constant. Although a
six atom ring is far from representing an infinite solid,
the N = 6 case does not differ much from the others,
when we examine the distances and the energy (Tab. 1).
In the benzene molecule, a completely different case, the
well-known aromatic properties of the π system also re-
sult in fine in C-C distances all equal, and suggest that
the“metallic character” can be already present in as few
as six atoms.

The geometry optimized in the quantum approach is
used also in the macroscopic calculations.

In presence of an external point charge, we keep the
same interatomic distances in the torus. The point charge

Table 1. Optimized torus radius R (Å), interatomic H-H
distances d (Å) and atomization energies Eat per atom
(kcal/atom) of N-atoms circular clusters of hydrogens obtained
at the MP2/6-31G* level.

N 6 18 30 50 90

R 0.9757 2.7830 4.6317 7.7176 13.8911

R/N 0.1626 0.1546 0.1544 0.1544 0.1544

d 0.9757 0.9665 0.9683 0.9692 0.9696

Eat/N 38.02 36.87 36.51 39.39 36.36

Q is taken aligned with one atom (numbered 1), i.e. on a
diameter containing the centre of one atom.

As is well known, atomic partial charges are not
uniquely defined. Here we will consider the charges derived
from a Natural Population Analysis (NPA) [9] where the
natural-orbital occupation numbers are obtained from the
diagonalization of the one-electron density matrix. GAUS-
SIAN 98 software has been used throughout this work [10].

4 Results

4.1 Hydrogen atom conductor

(i) The microscopic and macroscopic charges are tabu-
lated or figured in the following cases: N = 6, R/D = 0.55
to 0.1 (Tab. 2); N = 18, R/D = 0.55 and 0.4 (Figs. 1
and 2); N = 30, R/D = 0.55 and 0.4 (Figs. 3 and 4);
N = 50, R/D = 0.55 (Fig. 5); and N = 90, R/D = 0.55
(Fig. 6).

The most striking feature of the microscopic and
macroscopic curves representing the atomic charges along
the torus, is that they are similar in all cases. They al-
most cöıncide when Q is not too close to the torus, i.e.
for R/D = 0.4 or smaller. When Q is close, the general
shapes of the curves are identical, but periodic discrepan-
cies occur, due to microscopic or macroscopic oscillations
that will be discussed later.

For a negative external charge Q = −1, the charge on
the torus has a maximum on atom 1, in the closest position
to Q, and it decreases along the torus, down to a mini-
mum on the diametrally opposite position (atom N/2+1).
Therefore, in function of the angular coordinate ϕ of the
torus (0 < ϕ < 2π), the surface charge has the shape of a
well, which is rather square when Q is close (R/D = 0.55)
and thinner when Q is far (R/D = 0.4). As explained in
Section 2, the macroscopic charges on the torus are pro-
portional to Q, but the microscopic ones are not (Tab. 2).

Microscopic oscillations are observed on several curves,
especially for small N, with a periodic length correspond-
ing to two atoms (alternation). Their amplitude is greater
when Q is close : 5 × 10−2 (e−) for n = 18, R/D = 0.7
(not represented here); 10−2 for N = 18, R/D = 0.55
(Fig. 1), invisible for R/D = 0.4 (Fig. 2); for N = 30
the amplitude is 2 × 10−2 for R/D = 0.55 (Fig. 3), in-
visible for R/D = 0.4; for N = 50 it is 2 × 10−3 for
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Table 2. Natural orbital charges (10−4 e−) of hydrogen atoms
on a six-membered ring (radius R) under the influence of a
fixed negative point charge Q (e−) lying at a distance D from
the center of the circle. Values in brackets are those obtained
from the macroscopic treatment.

Q R/D Q1 Q2 = Q6 Q3 = Q5 Q4

−1 0.55 5000 −1267 −390 −1686

(5077) (−723) (−1143) (−1346)

0.40 2433 −383 −363 −941

(1857) (−36) (−568) (−650)

0.25 713 28 −206 −357

(532) (86) (−214) (−276)

0.10 82 26 −37 −60

(66) (24) (−32) (−51)

−2 0.55 8131 −1401 −1091 −3149

0.40 4481 −555 −784 −1803

0.25 1401 67 −413 −709

0.10 164 52 −74 −120

+1 0.55 −5289 1436 202 2013

0.40 −2846 564 292 1134

0.25 −742 −16 203 368

0.10 −82 −26 37 60

+2 0.55 −8527 1628 692 3887

0.40 −5798 1064 576 2518

0.25 −1514 −21 402 752

0.10 −164 −52 74 120

R/D = 0.7 (not represented), invisible for R/D = 0.55
(Fig. 5). One may assume, but this hypothesis remains
to be verified, that the microscopic oscillations could be
smoothed when considering the higher electric multipoles:
dipole P, quadrupole U, etc. In fact, we know [11] that the
spatial average of the charge defined after a microscopic
distribution of multipoles is given by ρ−∇ ·P+∇2: U−. . .

Slight oscillations also appear on several macroscopic
curves. They are an artefact of the method of calcula-
tion, since they appear only when the residue ∆/∆initial

(see Eqs. (4) and (10)) is not zero. The oscillations are
present when Q is close (R/D = 0.55, ∆/∆initial between
2 and 3%; Figs. 1, 3, 5, 6), and disappear for R/D = 0.4
or less (∆/∆initial < 1%; Figs. 2, 4). Being meaningless,
these oscillations must not be taken into account in the
comparison.

(ii) Let us compare NPA with other definitions of the
atomic charges. For N = 18, Q = −1 and R/D = 0.4,
atom 1 bears 0.0296 e− after the Natural Orbital analy-
sis, 0.0462 e− after the Mulliken analysis, 0.0374 e− de-
rived from the electrostatic potential following Breneman
et al. [12], 0.0245 e− in the derivation from the electro-
static potential by Kollman et al. [13], and 0.0300 e− from
the Atoms In Molecules method (AIM) [14]. AIM is a
powerful, although occasionally time-consuming, method
of obtaining relevant partitions of the electronic cloud.
Along the ring, the AIM method gives atomic charges in

 

Fig. 1. Comparison of atomic charges (10−3 e−) between clas-
sical macroscopic and microscopic quantum (in the Natural
Orbital definition) calculations for a 18 hydrogen atoms ring
cluster interacting with a Q = −1 point charge at a relative
distance R/D = 0.55. Solid line: microscopic approach; dashed
line: macroscopic approach.

 

Fig. 2. A 18 hydrogen atoms ring cluster interacting with a
Q = −1 point charge at a relative distance R/D = 0.40 (same
symbols as in Fig. 1).
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Fig. 3. A 30 hydrogen atoms ring cluster interacting with a
Q = −1 point charge at a relative distance R/D = 0.55 (same
symbols as in Fig. 1).

Fig. 4. A 30 hydrogen atoms ring cluster interacting with a
Q = −1 point charge at a relative distance R/D = 0.40 (same
symbols as in Fig. 1).

 

 

Fig. 5. A 50 hydrogen atoms ring cluster interacting with a
Q = −1 point charge at a relative distance R/D = 0.55 (same
symbols as in Fig. 1).

 

Fig. 6. A 90 hydrogen atoms ring cluster interacting with a
Q = −1 point charge at a relative distance R/D = 0.55 (same
symbols as in Fig. 1).
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Table 3. Comparison between atomic charges (10−4 e−) ob-
tained from Natural Orbitals quantum microscopic and macro-
scopic calculations in the case of a [N = 18; R/D = 0.40] torus
cluster of hydrogen and sodium atoms. The torus is influenced
by a fixed Q = −1 (e−) point charge lying at a distance D from
the centre. diff and γ are defined by equations (15) and (16).

Q1 Q2 Q9 Q10

H mic 296 221 −110 −109

mac (γ = 1.0) 291 227 −110 −115

diff (%) 1.7 2.7 0 5.5

Na mic 369 268 −130 −124

mac (γ = 1.0) 291 227 −110 −115

diff (%) 21 15 15 7.2

mac (γ = 1.35) 362 277 −129 −136

diff (%) 1.9 3.3 0.8 9.7

close agreement to the NPA method, both in sign and
magnitude. The Mulliken analysis also gives values close
to NPA, except on the first atom where the discrepancy is
concentrated. The charge on atom 4 seems better when de-
rived from the NPA definition (0.0011 e−) than from the
Mulliken definition (−0.0017 e−). Indeed this atom lies
still in the interaction cone of the negative point charge
Q and should be positively charged a priori. Nevertheless
these values are small. The derivation of Breneman et al.
gives oscillations of charges between Q7 to Q10, while no
oscillations are detected at this distance with NPA. The
MKS derivation breaks the symmetry and charges are not
satisfactory at all.

4.2 Sodium atom conductor

Since the main part of the physics which drives these prop-
erties seems to be already present in small size clusters, we
only give the results corresponding to a N = 18 sodium
atoms torus (and a Q = −1 point charge). First the struc-
ture of the isolated torus has been optimized in quan-
tum calculations, leading to the values: R = 9.8948 Å,
R/N = 0.5497, d(Na–Na) = 3.4364 Å and the atomiza-
tion energy per atom Eat/N = 6.09 kcal/atom. As for
hydrogen rings the distance d is larger than both the di-
atom and the solid state distance.

The results are similar for sodium and for hydrogen
atoms, but the agreement between the microscopic and
macroscopic charges is not as good for Na as it was for H.
This is apparent for R/D = 0.4 (Tab. 3): for atoms 1 and
2, and 9 and 10 at the opposite on the ring, the relative
difference

diff = |Qmic − Qmac|/Qmic (15)

is higher for Na than for H. The macroscopic calculations
give the same charges for Na and H, since the radii R
and r of the torus are in the same proportion for Na as
for H. Indeed, in both cases we have chosen r equal to half
the interatomic distance. This choice r = d/2 of the torus

 

Fig. 7. A 18 sodium atoms ring cluster interacting with a
Q = −1 point charge at a relative distance R/D = 0.40 (same
symbols as in Fig. 1).

section radius happened to be satisfactory for hydrogen,
but clearly it is not for sodium. When we try other section
radii r defined by

r = γd/2, (16)

with a proportionality factor γ different from 1 (Fig. 8),
we obtain the best agreement for γ = 1.35 (Tab. 3), i.e.
r = 2.32 Å. This study was repeated for R/D = 0.55,
leading to similar conclusions. The difference between
γ(H) = 1.0 and γ(Na) = 1.35 can be explained partly
by the shortness of the distance d(Na-Na) in the ring.
Indeed, let us compare r not to d/2 like in (16), but to
the covariant radius ddiatom/2 measured in the diatomic
molecule as usual:

r = γ′ddiatom/2.

Then the proportionality factors γ′ are γ′(H) =
0.484/0.373 = 1.30 and γ′(Na) = 2.32/1.858 = 1.25.

5 Conclusion

In the present study of the electrostatic influence, we have
chosen a simple microscopic conductor model, which cer-
tainly does not exactly describe a real conductor. But this
simplicity has allowed us to apply ab initio calculations
without any of the strong approximations that are com-
monly used for conducting materials.

For all cluster sizes in the microscopic calculations we
observed oscillations in charge magnitudes from one given
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Fig. 8. A 18 sodium atoms ring cluster interacting with a
Q = −1 point charge at a relative distance R/D = 0.40, for
various values of the proportionality factor γ defined by equa-
tion (16). ♦: γ = 0.5; � : γ = 1.35; ∆ = 2.0; X: γ = 3.0; O:
microscopic results.

atom to its neighbours. Their amplitude is greater when
the external charge is close (i.e. R/D tends to one), which
can be explained by the strong perturbation in the elec-
tronic cloud.

The results obtained from different cluster sizes and
R/D ratios are plotted and compared in Figures 9 and 10
in the microscopic and macroscopic cases respectively.
They are given in function of ϕ, the angle at the cen-
tre of the torus joining the external point charge and a
given atom. We do not consider the same R/D ratio for
all cluster sizes but the ratio for which the microscopic os-
cillations disappear. Comparing the curves between Fig-
ures 9 and 10, where the same ordinate range has been
used, the overall agreement is evident. All curves seem to
cross the QN = 0 line at the same point around ϕ = 60◦.
The angles ϕT , corresponding to the tangent to the torus
issued from the external point charge are 66◦ and 57◦ for
R/D ratios equal to 0.40 and 0.55 respectively. The tan-
gent point separates atoms positively charged from the
negatively charged.

When considering Na instead of H atoms in macro-
scopic calculations, we needed to vary the radius of the
torus section. The value of the proportionality factor γ,
considered in relation (16), appears reasonable.

The agreement between the two approaches indi-
cates that the Maxwell equations can be applied to such
nanoscale systems [15]. As discussed on the N = 6 clus-
ter, the linearity constraint is a problem only when the
external charge lies close to the torus.

Fig. 9. Comparison between atomic electronic charges ob-
tained from microscopic quantum calculations (in the Natural
Orbital definition) for different sizes of clusters in interaction
with a Q = −1 point charge lying at different R/D distances,
in function of the angle at the centre. O: Na18; R/D = 0.40; •:
H18; R/D = 0.40; �: H30; R/D = 0.40; �: H50; R/D = 0.55;
� : H90; R/D = 0.55.

Fig. 10. Comparison between atomic charges obtained from
classical macroscopic equations for different sizes of clusters in
interaction with a Q = −1 point charge lying at different R/D
distances, in function of the angle at the centre (same symbols
as in Fig. 9).
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